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Simulation study of localization of electromagnetic waves in two-dimensional random
dipolar systems
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We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in
a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the
electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields.
For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but
realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor
is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to
comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement
with previous investigations on other systems.
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I. INTRODUCTION

Over the past two decades, localization of classical wa
has been under intensive investigations, leading to a v
large body of literature~e.g., Refs.@1–22#!. Such a localiza-
tion phenomenon has been characterized by two levels.
is the weak localization associated with the enhanced b
scattering. That is, waves which propagate in the two op
site directions along a loop will obtain the same phase
interfere constructively at the emission site, thus enhanc
the backscattering. The second is the strong localizat
without confusion often just termed as localization, in whi
a significant inhibition of transmission appears and the
ergy is mostly confined spatially in the vicinity of the emi
sion site. While observations of localization of classic
waves for one-dimensional systems have been reported@7,9#,
observation of higher than one dimension remains a sub
of much debate@20,22,23#.

In a recent paper, a realistic model system has been
posed to study electromagnetic~EM! localization in two-
dimensional~2D! random media@24#. This model originated
from the previous study of the radiative effects of the elec
dipoles embedded in structured cavities@25#. It was shown
that EM localization is possible in such a disordered syst
When localization occurs, a coherent behavior appears a
revealed as a unique property differentiating localizat
from either the residual absorption or the attenuation effe
The major advantage of the present system over some p
ous models such as acoustic waves in bubbly water@18# or
water with air-filled cylinders@26# is that it is experimentally
available.

With the present paper, we wish to explore further t
localization properties of the system outlined in Ref.@24#.
We will investigate the dependence of localization behav
on a number of parameters including frequency, filling fa
tor, scattering strength, damping effect, and two differ
ways of measuring localization. Additionally, the spatial b
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haviors of the total, coherent, and diffusive wave intensit
will be studied, and are shown to comply with a simp
physical intuition. We stress that the concepts with regard
the coherent and diffusive waves fully comply with the sta
dard definitions in Refs.@2,27#.

II. THE SYSTEM AND THEORETICAL FORMULATION

A. The system

Following Erdoganet al. @25#, we consider 2D dipoles a
an ensemble of harmonically bound charge elements. In
way, each 2D dipole is regarded as a single dipole line, ch
acterized by the charge and dipole moment per unit len
We assume thatN parallel dipole lines, aligned along thez
axis, are embedded in a uniform dielectric medium andran-

domly located atrW i ( i 51,2, . . . ,N). The averaged distanc
between dipoles isd. A stimulating dipole line source is lo
cated atrWs , transmitting a continuous wave of angular fr
quencyv. By the geometrical symmetry of the system, w
only need to consider thez component of the electrica
waves.

B. The formulation

Although much of the following materials can be referr
to in Ref. @24#, we repeat the important parts here for t
sake of convenience and completeness.

Upon stimulation, each dipole will radiate EM waves. T
radiated waves will then repeatedly interact with the dipol
forming a process of multiple scattering. The equation
motion for thei th dipole is

d2

dt2
pi1v0,i

2 pi5
qi

2

mi
Ez~rW i !2b0,i

d

dt
pi for i 51,2, . . . ,N,

~1!

wherev0,i is the resonance~natural! frequency,pi , qi , and
mi are the dipole moment, charge, and effective mass
unit length of thei th dipole, respectively.Ez(rW i) is the total
electrical field acting on dipolepi , which includes the radi-
©2003 The American Physical Society09-1
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K. K.-H. WANG AND Z. YE PHYSICAL REVIEW E 68, 066609 ~2003!
ated field from other dipoles and also the direct field from
source. The factorb0,i denotes the damping due to ener
loss and radiation, and can be determined by energy con
vation. Without energy loss~such as heat!, b0,i can be deter-
mined from the balance between the radiative and vibratio
energies, and is given as@25#

b0,i5
qi

2v0,i

4emic
2

, ~2!

with e being the constant permittivity andc the speed of light
in the medium separately.

Equation~1! is virtually the same as Eq.~1! in Ref. @25#.
The only difference is that in Ref.@25#, Ez is the reflected
field at the dipole due to the presence of reflecting surrou
ing structures, while in the present case the field is from
stimulating source and the radiation from all other dipole

The transmitted electrical field from the continuous li
source is determined by the Maxwell equations@25#

S ¹22
]2

c2]t2D G0~rW2rWs!524m0v2p0pd (2)~rW2rWs!e
2 ivt,

~3!

where v is the radiation frequency, andp0 is the source
strength and is set to be unity. The solution of Eq.~3! is
clearly

G0~rW2rWs!5~m0v2p0!ipH0
(1)~kurW2rWsu!e2 ivt, ~4!

with k5v/c, andH0
(1) being the zeroth-order Hankel func

tion of the first kind.
Similarly, the radiated field from thei th dipole is given by

S ¹22
]2

c2]t2D Gi~rW2rW i !5m0

d2

dt2
pid

(2)~rW2rW i !. ~5!

The field arriving at thei th dipole is composed of the direc
field from the source and the radiation from all other dipol
and thus is given as

Ez~rW i !5G0~rW i2rWs!1 (
j 51,j Þ i

N

Gj~rW i2rW j !. ~6!

Substituting Eqs.~4!–~6! into Eq. ~1!, and writing pi
5pie

2 ivt, we arrive at

~2v21v0,i
2 2 ivb0,i !pi

5
qi

2

mi
FG0~rW i2rWs!1 (

j 51,j Þ i

N
m0v2

4
iH 0

(1)~kurW i2rW j u!pj G .

~7!

This set of linear equations can be solved numerically forpi .
After pi are obtained, the total field at any space point can
readily calculated from
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Ez~rW !5G0~rW2rWs!1(
j 51

N

Gj~rW2rW j !. ~8!

In the standard approach to wave localization, waves are
to be localized when the square modulus of the fielduE(rW)u2,
representing the wave energy, is spatially localized after
trivial cylindrically spreading effect is eliminated. Obviousl
this is equivalent to saying that the further away is the dip
from the source, the smaller is its oscillation amplitude, e
pected to follow an exponentially decreasing pattern.

There are several ways to introduce randomness to
~7!. For example, the disorder may be introduced by r
domly varying such properties of individual dipoles as t
charge, the mass, or the two combined. This is the m
common way that the disorder is introduced into the tig
binding model for electronic waves@28#. In the present
study, the disorder is brought in by the random distributi
of the dipoles.

For simplicity yet without losing generality, we assum
that all the dipoles are identical and they are randomly d
tributed within a square area. The source is located at
center~set to be the origin! of this area. For convenience, w
make Eq.~7! nondimensional by scaling the frequency b
the resonance frequency of a single dipolev0. This will lead
to two independent nondimensional parametersb
5q2m0/4m andb085(v/v0)(b0 /v0). Both parameters may
be adjusted in the experiment. For example, the factorb0 can
be modified by coating layered structures around the dipo
@25#. Then Eq.~7! becomes simply

~2 f 2112 ib08!pi5 ib f 2Fp0H0
(1)~kurW i2rWsu!

1 (
j 51,j Þ i

N

pjH0
(1)~kurW i2rW j u!G ~9!

with f 5v/v0. Equation ~9! is self-consistent and can b
solved numerically forpi and then the total field is obtaine
through Eqs.~3!, ~5!, and~8!.

III. THE RESULTS AND DISCUSSION

A. Two numerical measuring scenarios

In the following computation, we will consider two sce
narios. They are illustrated in Fig. 1 with the coordinat
being shown. In both cases, the sample takes a fixed rec
gular shape of which the size may vary. The dipoles, deno
by the small circles, are placed within the rectangle in
complete randomness. The receiver, denoted by the fi
black circle, is placed on thex axis.

In case~a!, the sample size is fixed. The receiver is plac
alongx axis to measure the signal at various positions, yie
ing the result of the transmission signal versus the dista
between the source and the receiver, termed as the trav
9-2
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SIMULATION STUDY OF LOCALIZATION OF . . . PHYSICAL REVIEW E 68, 066609 ~2003!
distance in the paper. This scenario complies with the or
nal conjecture of observation of localization@29#. In case~b!,
the receiver is placed at a very small distance outside
sample. While the sample size varies, this method is to m
sure the transmission through the sample of various si
yielding the result of the transmission signal versus
sample size.

B. General discussion of localization

Before moving to solve Eq.~7! for the phenomenon o
localization of EM waves, we discuss some general prop
ties of wave localization.

The coherence in localization. Although some parts of the
following discussion have been reported earlier, we rep
here for the sake of convenience and importance. The en
flow of EM waves isJW;Re@EW 3HW * #. By invoking the Max-
well equations to relate the electrical and magnetic fields,
can derive that the time averaged energy flow is

^JW & t[
1

TE0

T

dtJW;Re@EW 3HW * #5ReF i

v
EW 3~¹W 3EW * !G .

~10!

Now we write the electrical field asEW 5eWEuEW ueiu, with eWE

denoting the direction,uEW u andu being the amplitude and th
phase, respectively; and taking this into Eq.~10!, we arrive at

JW;uEW u2eWE3~eWE3¹W u!5uEW u2~¹W u!' , ~11!

where (¹W u)' refers to the component of¹W u which is per-
pendicular to the direction ofEW . Since in the present 2D
system, the electrical field is along the axis of the dipo
therefore by symmetry,¹W u is perpendicular toEW . Then Eq.
~11! is

JW;uEW u2¹W u. ~12!

Note that the above equations are exact, and only the
stants are omitted in the expression for brevity.

It is clear from Eq.~12! that whenu is constant, at leas
by spatial domains, whileuEW uÞ0, the flow would come to a
stop and the energy will be localized or stored in the spa
Therefore in the localized state—someone may call it a

FIG. 1. The conceptual layout of the two measuring methods
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frozen wave, a source can no longer radiate energies. L
we will show that such a phenomenon does appear w
waves are localized. As we can see later, all phase vec
defined asvW 5eW xcosu1eWysinu tend to point to the same di
rection. Therefore the current flow tends to zero according
Eq. ~12!, i.e., no energy radiation. Alternatively, we can wri
the oscillation of the dipoles aspi5upi ueiu i. By studying the
square modulus ofpi in the form of urW i2rWsuupi u2, and its
phaseu i , we can also investigate the localization of E
waves. Note here that the factorurW i2rWsu is to eliminate the
cylindrical spreading effect in 2D as can be seen from
expansion of the Hankel functionuH0

(1)(x)u2;1/x. That the
phaseu is constant implies that a coherence behavior appe
in the system, i.e., the localized state is a phase-cohe
state, as previously discussed@26#. It is a unique feature of
wave localization, and has also been shown to be relate
electronic localization~e.g., Ref.@30#!. Here, the coherence
refers to that all the oscillations are completely in phase,
u is constant, at least by domains. This phenomenon is
ferent from the concept of coherent phase in propaga
waves.

Spatial behavior of localized waves. Following Ref.@31#,
a general picture of localized and nonlocalized waves can
described. Without or with little absorption and with no lo
calization, the energy propagation is anticipated as follo
The coherent energy (;u^E&u2) is decaying due to attenua
tion by scattering, yielding a steady growth of the incoher
or diffusive energy (;^uEu2&2u^E&u2). When there is local-
ization, the wave will be trapped within ane-folding distance
from the penetration. In the nonlocalization case, the dif
sive intensity increases steadily as more and more scatte
occurs, complying with the Milne diffusion. In the localize
state, the diffusion energy increases initially. It will event
ally stop growing, followed by a decrease due to the int
ference of multiple scattering waves. Issues may be ra
with respect to whether this apprehended image is suppo
by actual situations. In the rest, we will inspect this proble
We note that here we discuss only the energy distribut
instead of energy flow, since in reality it is the energy whi
is mostly to be measured. As far as the energy flow is c
cerned, according to the previous discussion we expect
the flow is zero when localization occurs.

C. Numerical results

Unless otherwise noted, the following parameters are u
in the numerical simulation: the nondimensional damp
rate b0 /v050.001 and the interaction couplingb50.001.
The filling factor (b) varies from 2.25 to 25; the filling fac-
tor is defined as the number of dipoles per unit area.
without notification, the filling factor is taken as 6.25. Th
number of random configurations for averaging is taken
such a way that the convergency is assured. In the calc
tion, we scale all lengths by a lengthD such thatk0D51,
and frequency byv0. In this way, the frequency always en
ters ask/k. We find that all the results shown below are on
dependent on parametersb, b0 /v0, and the ratiov/v0 or
equivalentlyk/k0. Such a simple scaling property may facil
tate designing experiments. In the numerical computat
9-3
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K. K.-H. WANG AND Z. YE PHYSICAL REVIEW E 68, 066609 ~2003!
we takec51 for convenience. The total wave at a spat
point is scaled asT(rW)[E(rW)/E0(rW), with E0 being the di-
rect wave from the source, so that the trivial geome
spreading effect is naturally removed.

First, we plot the frequency response of the transmiss
in the scenario~b! of Fig. 1. The results are shown in Fig.
Here we see that there is a narrow window within which
transmission is highly inhibited, implying a strong localiz
tion effect. It is also clear that when the sample size is
creased, the inhibition increases. Comparing the results
the two filling factors, we know that the strong inhibitio
regime increases with filling factor. In the next computatio
we will focus on frequencies within the strong inhibitio
region.

Now we consider the phase and the spatial distribution
energy of the system. To describe the phase behavior o
system, we assign a unit phase vectoruW i5cosuieWx1sinuieWy to
the oscillation phaseu i of the dipoles. HereeW x and eW y are
unit vectors in thex and y directions, respectively. Thes
phase vectors are represented by a phase diagram in thx-y
plane with the phase vectoruW i being located at the dipole t
which the phaseu i is associated. The results are depicted
three frequencies in Fig. 3.

Here we see clearly that for the three frequencies wit
the strong inhibition region, the energy is spatially confin
near the transmitting source, and, as expected, the en
seems to decrease nearly exponentially along any radia
rection. Meanwhile, the system reveals an in-phase phen
enon: nearly all the phase vectors of the dipoles point to
same direction, exactly opposite to the phase vector of
source which is denoted by the black arrow. The picture r
resented in Fig. 3 fully complies with the general descript
of the coherence in localization stated above.

We also note from Fig. 3 that near the sample bound
the phase vectors start to point to different directions. Thi
because the numerical simulation is carried out for a fin
sample size. For a finite system, the energy can leak ou
the boundary, resulting in disorientation of the phase vect
When enlarging the sample size by adding more dipo
while keeping the averaged distance between dipoles fi
the area showing the phase coherence will increase acc
ingly.

The results of Fig. 3 are encouraging, as they are a str
indication of localization. In the following, we will furthe

FIG. 2. Transmission vs frequency for two filling factors a
two sample sizes.
06660
l

c

n

e

-
or

,

f
he

r

n
d
rgy
i-

m-
e
e
-

n

y,
is
e
at
s.
s
d,
rd-

ng

explore the features of localization. In Fig. 4, we compa
the transmission results for the two scenarios from Fig.
Here it is shown that although there is a slight difference
the transmitted strength, generally speaking the spatial de
features are nearly identical, signified by the match of
decaying slopes indicated in the figure. Though suspecte
be true previously, such a match is important, and to the b
of our knowledge this is the first that has been ever sho
for EM waves. It supports directly that the scenario~b! can
also be used to infer localization effects, facilitating me
surements of localization; in the original conjecture, it w
scenario~a! that has been suggested for discerning locali
tion. In the rest of simulation, we will adopt scenario~b! in
Fig. 1.

The bottom panel of Fig. 3 indicates that the level
spatial localization of energy varies for the three frequenc
To quantify the localization in Fig. 3, we plot the total ener
as a function of the sample size. The results are presente
Fig. 5. Here, the numerical data are fitted with the le
squares method and the fitted curves are shown by the s
lines; the unnoticeable deviation from the lines reflects
fluctuation due to the random distribution. Two ways of a
eraging are adopted. One is the traditional way in which

FIG. 3. The phase diagram for the two-dimensional phase v
tors defined in the text; the phase of the source is assumed t
zero. Each vector is located at the site of the dipole; thus the lo
tions of the phase vectors also denote the random distribution o
dipoles. Bottom: The spatial distribution of energy (;uTu2). Three
frequencies are chosen, the sample size is 838.

FIG. 4. Comparison of the total transmission at three frequ
cies for the two scenarios shown in Fig. 1. Thex labels ‘‘Distance’’
and ‘‘Size’’ refer to scenarios~a! and~b!, respectively. The solid and
dotted lines refer to~a! and ~b!, respectively.
9-4
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SIMULATION STUDY OF LOCALIZATION OF . . . PHYSICAL REVIEW E 68, 066609 ~2003!
logged total transmission is averaged, while the other is
take log of the averaged total energy. These can be refe
to from they-axis labels. It shows that after removing th
spreading factor, the data can be fitted bye2r /j. From the
slope of the solid lines, the localization lengthsj, which are
the inverse of the slopes, can be estimated. Here it is sh
that the decaying slopes from the two averaging methods
very close, an encouraging fact. It is also indicated by
decrease of the slopes with frequency that the localiza
effect decreases as the frequency increases.

With the fixed filling factor of 6.25, we have also inve
tigated the spatial variations of the total, coherent, and
diffusive energies for three frequencies discussed. The
sults are presented in Fig. 6. Here we see that the result
in accordance with the above general consideration of lo
ization. That is, due to scattering and localization, the coh
ent waves decrease with the sample size. The diffusive w
increases initially as more and more scattering occurs, t
reaches a peak and starts to decay due to the localiza
effect. The results show that in the present system, the d
sive portion in the total energy is much smaller than
coherent portion, indicating that the mean free path is v
small. When plotted in the log scale, we have found that
total and coherent energies decay exponentially with the

FIG. 5. The transmission vs the sample size for three frequ
cies. The slopes can be used to estimate the localization lengt

FIG. 6. Behaviors of the total, coherent, and the diffusive en
gies as a function of sample size in the scenario describe
Fig. 1~b!.
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tance, while the diffusive energy increases initially, th
starts to decay exponentially. It is worth noting that for t
three frequencies considered, the total energy does not re
any behavior similar to the diffusive waves, in contrast to t
previous theoretical conjecture@2#. The theory predicts tha
the total energy would follow the behavior of diffusiv
waves until the sample size is larger than the localizat
length. One explanation is that in the present system,
scattering is too significant so that the diffusive portion ne
dominates. A search for the possible match between
simulation and theory in certain conditions is still underg
ing.

In Fig. 7, we plot the localization length versus frequen
and filling factor separately. It is shown that with the fixe
filling factor, referring to Fig. 7~a!, the localization length
increases with frequency within the frequency regime c
sidered. With a fixed frequency, the localization length ten
to decrease, meaning increasing localization effects, as
filling factor increases.

Figure 8 shows the transmission versus frequency
various coupling constants and damping rates. From this
ure, we observe the following.

~1! The increasing coupling strength leads to a wid
strong inhibition region, but shallower localization valley.

~2! When increasing the coupling strength, a promine
resonance peak appears below the natural frequencyv0, and
the peak moves toward lower frequencies as the stren

n-

r-
in

FIG. 7. Localization length as a function of~a! frequency and
~b! filling factor. The sample size is 838 for ~a!.

FIG. 8. Transmission vs frequency for various coupli
strengths and damping factors:~a! various coupling strengths with
damping rate 0.001;~b! various damping rates with coupling con
stant 0.001. The sample size is 434.
9-5
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K. K.-H. WANG AND Z. YE PHYSICAL REVIEW E 68, 066609 ~2003!
increases, a feature that also appears in the acoustic sy
@18#.

~3! Generally speaking, the increasing damping rate
grades the localization level, and tends to abolish the re
nance peak. Also it seems to widen the strong localiza
region at the lower frequency side.

IV. SUMMARY

In this paper, the localization features in a simple elect
magnetic system are investigated in detail. Some gen
properties of the localization phenomenon are elabora
For certain ranges of frequencies, strongly localized elec
d

d

an
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er,
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magnetic waves have been observed in such a simple
realistic disordered system. It is shown that the localizat
depends on a number of parameters including frequency,
ing factor, and damping rate. The spatial behavior of
total, coherent, and diffusive waves is also explored, a
found to comply with a physical intuitive picture. A phas
diagram characterizing localization is presented, in agr
ment with previous investigations on other systems@26#.
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