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Simulation study of localization of electromagnetic waves in two-dimensional random
dipolar systems
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We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in
a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the
electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields.
For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but
realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor
is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to
comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement
with previous investigations on other systems.
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[. INTRODUCTION haviors of the total, coherent, and diffusive wave intensities
will be studied, and are shown to comply with a simple
Over the past two decades, localization of classical wavephysical intuition. We stress that the concepts with regard to
has been under intensive investigations, leading to a verihe coherent and diffusive waves fully comply with the stan-
large body of literaturde.g., Refs[1-22)). Such a localiza- dard definitions in Refd.2,27].
tion phenomenon has been characterized by two levels. One
is the weak localization associated with the enhanced back-||. THE SYSTEM AND THEORETICAL FORMULATION
scattering. That is, waves which propagate in the two oppo-
site directions along a loop will obtain the same phase and
interfere constructively at the emission site, thus enhancing Following Erdogaret al.[25], we consider 2D dipoles as
the backscattering. The second is the strong localizatiorgan ensemble of harmonically bound charge elements. In this
without confusion often just termed as localization, in whichway, each 2D dipole is regarded as a single dipole line, char-
a significant inhibition of transmission appears and the enacterized by the charge and dipole moment per unit length.
ergy is mostly confined spatially in the vicinity of the emis- We assume thall parallel dipole lines, aligned along tfze
sion site. While observations of localization of classical@Xis, are embedded in a uniform dielectric medium eamtt
waves for one-dimensional systems have been repprtéfj  domlylocated atr; (i=1,2,... N). The averaged distance
observation of higher than one dimension remains a subjedetween dipoles igl. A stimulating dipole line source is lo-
of much debat§20,22,23. cated atFS, transmitting a continuous wave of angular fre-
In a recent paper, a realistic model system has been pr@uencyw. By the geometrical symmetry of the system, we
posed to study electromagnetiEM) localization in two- only need to consider the component of the electrical
dimensional2D) random medig24]. This model originated waves.
from the previous study of the radiative effects of the electric
dipoles embedded in structured cavit[@]. It was shown B. The formulation
that EM localization is possible in such a disordered system. Although much of the following materials can be referred

When localization occurs, a coherent behavior appears and {8 in Ref. [24], we repeat the important parts here for the

revealed as a unique property differentiating localizationgg o of convenience and completeness.

from either the residual absorption or the attenuation effects. Upon stimulation, each dipole will radiate EM waves. The

The maj;jorl advar;]tage of the.present systsrrt;g)lver SOme Previs jiated waves will then repeatedly interact with the dipoles,
ous models such as acoustic waves in bubbly W8} or  t;ming 4 process of multiple scattering. The equation of
water with air-filled cylinder$26] is that it is experimentally motion for theith dipole is

A. The system

available.
With the present paper, we wish to explore further the 42 ? . d
localization properties of the system outlined in Ref4]. —2pi+w§ipi=—'EZ(ri)—b0’i—pi for i=1,2,...N,
We will investigate the dependence of localization behavior ’ m dt
on a number of parameters including frequency, filling fac- (1)

tor, scattering strength, damping effect, and two different

ways of measuring localization. Additionally, the spatial be-Wherew,, is the resonancénatura) frequency,p;, d;, and
m; are the dipole moment, charge, and effective mass per

unit length of theith dipole, respectivelyEz(Fi) is the total
*Electronic address: zhen@phy.ncu.edu.tw electrical field acting on dipolg;, which includes the radi-
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ated field from other dipoles and also the direct field from the R o N o

source. The factoby; denotes the damping due to energy Ez(r)zGO(r—rs)JrE Gj(r—rj). (8
loss and radiation, and can be determined by energy conser- =1

vation. Without energy losgsuch as heatby; can be deter-
mined from the balance between the radiative and vibrationaI

. L In the standard approach to wave localization, waves are said
energies, and is given 425]

to be localized when the square modulus of the figlt) |2,
GCwo; representing the wave energy, is spatially localized after the
bg;=— oi ’ (2) trivial cylindrically spreading effect is eliminated. Obviously,
" 4em;c? this is equivalent to saying that the further away is the dipole
from the source, the smaller is its oscillation amplitude, ex-
with e being the constant permittivity ardthe speed of light pected to follow an exponentially decreasing pattern.
in the medium separately. There are several ways to introduce randomness to Eq.
Equation(1) is virtually the same as E@l) in Ref.[25]. (7). For example, the disorder may be introduced by ran-
The only difference is that in Ref25], E, is the reflected domly varying such properties of individual dipoles as the
field at the dipole due to the presence of reflecting surroundeharge, the mass, or the two combined. This is the most
ing structures, while in the present case the field is from theommon way that the disorder is introduced into the tight-
stimulating source and the radiation from all other dipoles. binding model for electronic waveg28]. In the present
The transmitted electrical field from the continuous linestudy, the disorder is brought in by the random distribution
source is determined by the Maxwell equati¢@s] of the dipoles.
For simplicity yet without losing generality, we assume
2 Lo Lo ) that all the dipoles are identical and they are randomly dis-
(VZ— > 2)Go(f—rs)z—4Mowzpo775(2)(f—rs)e""t, tributed within a square area. The source is located at the
coot 3 center(set to be the originof this area. For convenience, we
) make Eq.(7) nondimensional by scaling the frequency by
where w is the radiation frequency, angd, is the source

the resonance frequency of a single dipelg This will lead
strength and is set to be unity. The solution of E8). is to two independent nondimensional parametets
clearly

=0%uo/4m andbjy= (w/wg)(by/w,). Both parameters may

be adjusted in the experiment. For example, the fdzgaran

4) be modified by coating layered structures around the dipoles
[25]. Then Eq.(7) becomes simply

Go(F—=1s)=(pow?po)i mHI(KIr —rg)e ™",
0

with k= w/c, andH{" being the zeroth-order Hankel func-
tion of the first kind.

Similarly, the radiated field from thigh dipole is given by (—f2+1—ibg)p;i=ib 2 poHP(K|ri—r4|)
Ve ) 6= o p s 5 ; >
P i(r ri)_/—LOdtzpi (r=r). _|_j:12j¢i o HEOKIT =] (@

The field arriving at theth dipole is composed of the direct
field from the source and the radiation from all other dipoleswith f=w/w,. Equation(9) is self-consistent and can be

and thus is given as solved numerically fop; and then the total field is obtained
through Eqgs(3), (5), and(8).

N
EAr)=Go(ri—re)+ ;#_ Gi(r;—r)). (6)
=171
IIl. THE RESULTS AND DISCUSSION

Substituting Eqs.(4)—(6) into Eqg. (1), and writing p; A. Two numerical measuring scenarios

=p;e ', we arrive at . . , .
In the following computation, we will consider two sce-

o2, 2 \n. narios. They are illustrated in Fig. 1 with the coordinates
(— o+ wg;—iobg)p; ! _

’ ’ being shown. In both cases, the sample takes a fixed rectan-

q; .. wow? AP gular shape of which the size may vary. The dipoles, denoted

“m Go(ri—rs)f_z — Mo (klri=r;)p;|. by the small circles, are placed within the rectangle in a

! =L complete randomness. The receiver, denoted by the filled

(7)  black circle, is placed on the axis.

In case(a), the sample size is fixed. The receiver is placed

This set of linear equations can be solved numericallypfor  alongx axis to measure the signal at various positions, yield-
After p; are obtained, the total field at any space point can béng the result of the transmission signal versus the distance
readily calculated from between the source and the receiver, termed as the traveling

2 N
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(A) (B) frozen wave, a source can no longer radiate energies. Later
Y Traveling Distance Y) sample Size(L) we will show that such a phenomenon does appear when
/ S / S waves are localized. As we can see later, all phase vectors
0 o] : - - - . : .
0O o 9/ 0O o defined as) =e,cosf+egsind tend to point to the same di-
¥ e rection. Therefore the current flow tends to zero according to
o © Ssilves g © SRS o Eq. (12)', i.e., no energy radiation. Alteri%anvely, we can write
X . the oscillation of the dipoles gg=|p;|e'%. By studying the
0 o o © X square modulus o in the form of |r;—r4|p;|2 and its
0 © 0 phase#d,, we can also investigate the localization of EM
0 0 0 0 ©) waves. Note here that the factor—r| is to eliminate the
T Receiver cylindrical spreading effect in 2D as can be seen from the

expansion of the Hankel functioi§")(x)|?~ 1/x. That the
FIG. 1. The conceptual layout of the two measuring methods. phasef is constant implies that a coherence behavior appears
in the system, i.e., the localized state is a phase-coherent
distance in the paper. This scenario complies with the origistate, as previously discussg2b]. It is a unique feature of
nal conjecture of observation of localizatifi2]. In case(b),  wave localization, and has also been shown to be related to
the receiver is placed at a very small distance outside thg|ectronic localizatior(e.g., Ref.[30]). Here, the coherence
sample. While the sample size varies, this method is to megefers to that all the oscillations are completely in phase, i.e.,
sure the transmission through the sample of various sizeg, js constant, at least by domains. This phenomenon is dif-
y|9|d|ng the result of the transmission Signal versus thq:erent from the Concept of coherent phase in propagating
Sample size. waves.
Spatial behavior of localized waveBollowing Ref.[31],
B. General discussion of localization a general picture of localized and nonlocalized waves can be
Before moving to solve Eq(7) for the phenomenon of de;crit_)ed. Without or with Iittle_abs_orptiqn_and with no lo-
localization of EM waves, we discuss some general properc@lization, the energy propagation s anticipated as follows.
ties of wave localization. 'I_'he coherent _energ_y~(|_<E>| ) is decaying due to attenua-
The coherence in localizatioAlthough some parts of the 110N by scattering, y|eldlng a steadzy growth of the incoherent
following discussion have been reported earlier, we reped®’ diffusive energy ¢(|E|%)—|(E)|*). When there is local-

here for the sake of convenience and importance. The enerd§ation, the wave will be trapped within &sfolding distance

TN : . _Trom the penetration. In the nonlocalization case, the diffu-
flow of EM. waves isJ~Re EXH ] By invoking the Max sive intensity increases steadily as more and more scattering

%ccurs, complying with the Milne diffusion. In the localized
state, the diffusion energy increases initially. It will eventu-
1T L il L ally stop growing, followed by a decrease due to the inter-
(I)= —f dtJ~RdEX H*]=Re{—E><(V><E*)}. ference of multiple scattering waves. Issues may be raised
T 0 w . . . .
with respect to whether this apprehended image is supported
(10 by actual situations. In the rest, we will inspect this problem.
. . ) s s Lo We note that here we discuss only the energy distribution
Now we write the electrical field aE=eg|E[e'”, with e j5i0aq of energy flow, since in reality it is the energy which
denoting the directior|E| and ¢ being the amplitude and the s mostly to be measured. As far as the energy flow is con-
phase, respectively; and taking this into ELf)), we arrive at  cerned, according to the previous discussion we expect that
the flow is zero when localization occurs.

can derive that the time averaged energy flow is

J~|E[?eex (eexVO)=|E[*(V0), , (1D)
C. Numerical results

where (V6), refers to the component &f 6 which is per- . .

. L S i Unless otherwise noted, the following parameters are used
pendicular to the direction oE. Since in the present 2D, the numerical simulation: the nondimensional damping
system, the electrical ilelq is along Ithe aX|§ of the d'p°|e’rate bo/wo=0.001 and the interaction couplirtg=0.001.
therefore by symmetryy 6 is perpendicular t&. Then Eq.  The filling factor (8) varies from 2.25 to 25; the filling fac-
(11) is tor is defined as the number of dipoles per unit area. But

L without notification, the filling factor is taken as 6.25. The
J~|E[?V 6. (12 number of random configurations for averaging is taken in
such a way that the convergency is assured. In the calcula-
Note that the above equations are exact, and only the cofipn, we scale all lengths by a length such thatkoD=1,
stants are omitted in the expression for brevity. and frequency byo,. In this way, the frequency always en-
It is clear from Eq.(12) that whend is constant, at least ters ask/k. We find that all the results shown below are only
by spatial domains, whiléE|# 0, the flow would come to a dependent on parametes by/wo, and the ratiow/wy or
stop and the energy will be localized or stored in the spacesquivalentlyk/k,. Such a simple scaling property may facili-
Therefore in the localized state—someone may call it as @ate designing experiments. In the numerical computation,
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FIG. 2. Transmission vs frequency for two filling factors and
two sample sizes.

we takec=1 for convenience. The total wave at a spatial

point is scaled a§'(F)EE(F)/EO(F), with Ey being the di- FIG. 3. The phase diagram for the two-dimensional phase vec-
rect wave from the source, so that the trivial geometrictors defined in the text; the phase of the source is assumed to be
spreading effect is naturally removed. zero. Each vector is located at the site of the dipole; thus the loca-

First, we plot the frequency response of the transmissiotions of the phase vectors also denote the random distribution of the
in the scenaridb) of Fig. 1. The results are shown in Fig. 2. dipoles. Bottom: The spatial distribution of energy|[(T|?). Three
Here we see that there is a narrow window within which thefrequencies are chosen, the sample sizeX$8
transmission is highly inhibited, implying a strong localiza-
tion effect. It is also clear that when the sample size is in-explore the features of localization. In Fig. 4, we compare
creased, the inhibition increases. Comparing the results fdhe transmission results for the two scenarios from Fig. 1.
the two filling factors, we know that the strong inhibition Here it is shown that although there is a slight difference in
regime increases with filling factor. In the next computationsthe transmitted strength, generally speaking the spatial decay
we will focus on frequencies within the strong inhibition features are nearly identical, signified by the match of the
region. decaying slopes indicated in the figure. Though suspected to

Now we consider the phase and the spatial distribution obe true previously, such a match is important, and to the best
energy of the system. To describe the phase behavior of thef our knowledge this is the first that has been ever shown

system, we assign a unit phase veaior cosge,+sin Hiéyto for EM waves. It supports directly that the sce_qa(nﬁ@ can
the oscillation phas#, of the dipoles. Here, and 6, are also be used to infer localization effects, facilitating mea-
unit vectors in thex éndy directions. respexctively.yThese surements of localization; in the original conjecture, it was

phase vectors are represented by a phase diagram inythe scenario(a) that has been suggested for discerning localiza-
) SO ) tion. In the rest of simulation, we will adopt scenaftly in
plane with the phase vectog being located at the dipole to giq 1.

which the phas®, is associated. The results are depicted for “The pottom panel of Fig. 3 indicates that the level of

three frequencies in Fig. 3. _ __spatial localization of energy varies for the three frequencies.
Here we see clearly that for the three frequencies withinrg quantify the localization in Fig. 3, we plot the total energy
the strong inhibition region, the energy is spatially confinedys g function of the sample size. The results are presented in
near the transmitting source, and, as expected, the energyy. 5. Here, the numerical data are fitted with the least
seems to decrease nearly exponentially along any radial diquares method and the fitted curves are shown by the solid
rection. Meanwhile, the system reveals an in-phase phenonjnes: the unnoticeable deviation from the lines reflects the
enon: nearly all the phase vectors of the dipoles point to th@ctyation due to the random distribution. Two ways of av-

same direction, exactly opposite to the phase vector of thgraging are adopted. One is the traditional way in which the
source which is denoted by the black arrow. The picture rep-

resented in Fig. 3 fully complies with the general description
of the coherence in localization stated above.

We also note from Fig. 3 that near the sample boundary,
the phase vectors start to point to different directions. This is7
because the numerical simulation is carried out for a finite & -4
sample size. For a finite system, the energy can leak out aE

(n/o)(J =1.003 oo/oo0 =1.005 (n/oo0 =1.007
0 — o

-1
-2

-2
-4

N g
. . g . . e 5 — Slope: -2.208 —_ : 1.
the boundary, resulting in disorientation of the phase vectors | = Siope: 3549 iE Slope: _2.291 L Slope: 1583
When enlarging the sample size by adding more dipoles o 1 2 "o 1 2 "o 1 2
Size or Distance Size or Distance Size or Distance

while keeping the averaged distance between dipoles fixed,
the area showing the phase coherence will increase accord- FIG. 4. Comparison of the total transmission at three frequen-
ingly. cies for the two scenarios shown in Fig. 1. Thiabels “Distance”

The results of Fig. 3 are encouraging, as they are a stronghd “Size” refer to scenariog) and(b), respectively. The solid and
indication of localization. In the following, we will further dotted lines refer tqa) and (b), respectively.
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+ wlo, = 1.003, Slope = -3.549 + e, = 1.003, Slope = -3.848 102 10?

0 wlw, = 1.005, Slope = -2.291 0 wlw, = 1.005, Slope = -2.436 (A) (B)

o ol =1.007, Slope = -1.553 o ol =1.007, Slope = -1.649 A oo =1.003
. o . a < Filling Factor: 4.0 %%

s wlo, =1.005
1 | =8~ Filling Factor: 6.25 1 -~ 0
-1 A -1 (B) 10 o Filling Factor: 9.0 10 - 00, =1.007
ap, ap,
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E E
= =
= E -4 .
-5 -5 -1 10"
1.002 1.004 1.006 1.008 1.01 5 10 15 20 25
-6 -6 Frequency(u)/mo) Filling Factor(B)
o 05 1 15 2 7o 05 1 15 2 ot .
Sample Size(L) Sample Size(L) FIG. 7. Localization length as a function &) frequency and

(b) filling factor. The sample size is>88 for (a).
FIG. 5. The transmission vs the sample size for three frequen-

cies. The slopes can be used to estimate the localization length. tance, while the diffusive energy increases initially, then

starts to decay exponentially. It is worth noting that for the

logged total transmission is averaged, while the other is t(?(I]ree frequencies considered, the total energy does not reveal
take log of the averaged total energy. These can be referre

; . any behavior similar to the diffusive waves, in contrast to the
to from they-axis labels. It shows that after removing the revious theoretical conjectuf@]. The theory predicts that
spreading factor, the data can be fitted éy’¢. From the 'E)h total eneray w Ide I w.th beh v?/rp f diffusiv
slope of the solid lines, the localization lengtfiswhich are € fotal energy wou'd Toflo € behavior o usive

the inverse of the slopes, can be estimated. Here it is showf{aVes until the sample s_ize Is I_arger than the localization
that the decaying slopes from the two averaging methods al]gngth._ One exp'?”?‘.‘on is that in the_ present system, the
very close, an encouraging fact. It is also indicated by thecattering is too significant so that the diffusive portion never

decrease of the slopes with frequency that the IocaIizatioH.omma.teS' A search _for the.possml_e_ mat.ch between the
effect decreases as the frequency increases. _S|mulat|on and theory in certain conditions is still undergo-

With the fixed filling factor of 6.25, we have also inves- "9

: : - In Fig. 7, we plot the localization length versus frequency
tigated the spatial variations of the total, coherent, and theand filling factor separately. It is shown that with the fixed

diffusive energies for three frequencies discussed. The res,. ; . o
sults are presented in Fig. 6. Here we see that the results a%ljgmg factor, referring to Fig. %), the localization length

in accordance with the above general consideration of locaflCreases with frequency within the frequency regime con-

ization. That is, due to scattering and localization, the coher-Sidered' With a fixed frequency, the localization length tends

ent waves decrease with the sample size. The diffusive Wavt "ge(‘%;ec?gre’mrgriig'gg increasing localization effects, as the
increases initially as more and more scattering occurs, the 9 '

reaches a peak and starts to decay due to the localization Figure 8 shows the transmission versus frequency for

effect. The results show that in the present system, the diffu’arous coupling constants and damping rates. From this fig-

; o . ure, we observe the following.
sive portion in the total energy is much smaller than the (1) The increasing coupling strength leads to a wider

coherent portion, indicating that the mean free path is V€ %trong inhibition region, but shallower localization valle
small. When plotted in the log scale, we have found that the''ong gron, Y-

total and coherent energies decay exponentially with the dis- (2) When increasing the coupling strength, a prominent
resonance peak appears below the natural frequepcand

the peak moves toward lower frequencies as the strength

(u/u)o =1.003 m/mo =1.005 ao/eou =1.007
1 1 1
= Total = Total = Total

5 111 Coherent 1111 Coherent 1111 Coherent — Coupling Constant = 0.001 — Damping Rate = 0.001

< | 0 I\x 1 '\ 0w Coupling Constant=0.005 | [« Damping Rate = 0.005

E 0.5 05 05 = Coupling C =0.010 = Damp Rate = 0.010

o

E

) 0 0
0 1 2 0 1 2 0 1 2
c
o
2 s
= 0.01 LAY 0.01 0.01
g I} ' REAN . -=
= \ 1 & S
o 0.005 % 0.005; , » 0.005 ’ ~
> - 4
= . ' N n
é ~o k. ’ 0.96 0.98 1 1.02 1.04 0.98 1 1.02 1.04
8 0 == 0 0 /o w/®
0 2 0 2 0 2 0 0

Sample1 Size(L) Sample1 Size(L) Sample1 Size(L)
FIG. 8. Transmission vs frequency for various coupling

FIG. 6. Behaviors of the total, coherent, and the diffusive enerstrengths and damping factors) various coupling strengths with
gies as a function of sample size in the scenario described idamping rate 0.001(b) various damping rates with coupling con-

Fig. 1b). stant 0.001. The sample size ix4.
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increases, a feature that also appears in the acoustic systenagnetic waves have been observed in such a simple but
[18]. realistic disordered system. It is shown that the localization
(3) Generally speaking, the increasing damping rate dedepends on a number of parameters including frequency, fill-
grades the localization level, and tends to abolish the resdng factor, and damping rate. The spatial behavior of the
nance peak. Also it seems to widen the strong localizatiortotal, coherent, and diffusive waves is also explored, and
region at the lower frequency side. found to comply with a physical intuitive picture. A phase
diagram characterizing localization is presented, in agree-

IV. SUMMARY

In this paper, the localization features in a simple electro-
magnetic system are investigated in detail. Some general

ment with previous investigations on other systdi2@.
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